spark sql 2.3 源码解读 - Analyzer (3.1)
本章将介绍analyzer 结合 catalog 进行绑定,生成 Resolved Logical Plan.
上一步得到的 Unresolved Logical Plan将会执行:
lazy val analyzed: LoarkgicalPlan = {
SparkSession.setActiveSession(sparkSession)
sparkSession.sessionState.analyzer.executeAndCheck(logical)
}
Analyzer源码:
/**
* Provides a logical query plan analyzer, which translates [[UnresolvedAttribute]]s and
* [[UnresolvedRelation]]s into fully typed objects using information in a [[SessionCatalog]].
*/
class Analyzer(
catalog: SessionCatalog,
conf: SQLConf,
maxIterations: Int)
extends RuleExecutor[LogicalPlan] with CheckAnalysis {
def executeAndCheck(plan: LogicalPlan): LogicalPlan = {
// 执行 analyze逻辑
val analyzed = execute(plan)
try {
checkAnalysis(analyzed)
EliminateBarriers(analyzed)
} catch {
case e: AnalysisException =>
val ae = new AnalysisException(e.message, e.line, e.startPosition, Option(analyzed))
ae.setStackTrace(e.getStackTrace)
throw ae
}
}
override def execute(plan: LogicalPlan): LogicalPlan = {
AnalysisContext.reset()
try {
executeSameContext(plan)
} finally {
AnalysisContext.reset()
}
}
private def executeSameContext(plan: LogicalPlan): LogicalPlan = super.execute(plan)
Analyzer继承自RuleExecutor[LogicalPlan],而执行的关键函数调用的是super.execute(plan)方法,所以我们先看一下RuleExecutor,他做的事情很简单,就是按批次,按顺序对plan执行rule,会迭代多次。下面代码逻辑很简单,只是log比较多而已。
abstract class RuleExecutor[TreeType <: TreeNode[_]] extends Logging {
// 定义了两种策略,一次和固定次数
/**
* An execution strategy for rules that indicates the maximum number of executions. If the
* execution reaches fix point (i.e. converge) before maxIterations, it will stop.
*/
abstract class Strategy { def maxIterations: Int }
/** A strategy that only runs once. */
case object Once extends Strategy { val maxIterations = 1 }
/** A strategy that runs until fix point or maxIterations times, whichever comes first. */
case class FixedPoint(maxIterations: Int) extends Strategy
// 一个批次的rules
/** A batch of rules. */
protected case class Batch(name: String, strategy: Strategy, rules: Rule[TreeType]*)
// 所有的rule,按批次存放
/** Defines a sequence of rule batches, to be overridden by the implementation. */
protected def batches: Seq[Batch]
// 执行rule,关键代码很简单,就是按批次,按顺序对plan执行rule,会迭代多次
/**
* Executes the batches of rules defined by the subclass. The batches are executed serially
* using the defined execution strategy. Within each batch, rules are also executed serially.
*/
def execute(plan: TreeType): TreeType = {
var curPlan = plan
val queryExecutionMetrics = RuleExecutor.queryExecutionMeter
batches.foreach { batch =>
val batchStartPlan = curPlan
var iteration = 1
var lastPlan = curPlan
var continue = true
// Run until fix point (or the max number of iterations as specified in the strategy.
while (continue) {
curPlan = batch.rules.foldLeft(curPlan) {
case (plan, rule) =>
val startTime = System.nanoTime()
// 执行rule,得到新的plan
val result = rule(plan)
val runTime = System.nanoTime() - startTime
// 判断rule是否起了作用
if (!result.fastEquals(plan)) {
queryExecutionMetrics.incNumEffectiveExecution(rule.ruleName)
queryExecutionMetrics.incTimeEffectiveExecutionBy(rule.ruleName, runTime)
logTrace(
s"""
|=== Applying Rule ${rule.ruleName} ===
|${sideBySide(plan.treeString, result.treeString).mkString("\n")}
""".stripMargin)
}
queryExecutionMetrics.incExecutionTimeBy(rule.ruleName, runTime)
queryExecutionMetrics.incNumExecution(rule.ruleName)
// Run the structural integrity checker against the plan after each rule.
if (!isPlanIntegral(result)) {
val message = s"After applying rule ${rule.ruleName} in batch ${batch.name}, " +
"the structural integrity of the plan is broken."
throw new TreeNodeException(result, message, null)
}
result
}
// 是否达到迭代次数
iteration += 1
if (iteration > batch.strategy.maxIterations) {
// Only log if this is a rule that is supposed to run more than once.
if (iteration != 2) {
val message = s"Max iterations (${iteration - 1}) reached for batch ${batch.name}"
if (Utils.isTesting) {
throw new TreeNodeException(curPlan, message, null)
} else {
logWarning(message)
}
}
continue = false
}
if (curPlan.fastEquals(lastPlan)) {
logTrace(
s"Fixed point reached for batch ${batch.name} after ${iteration - 1} iterations.")
continue = false
}
lastPlan = curPlan
}
// 该批次rule是否起作用
if (!batchStartPlan.fastEquals(curPlan)) {
logDebug(
s"""
|=== Result of Batch ${batch.name} ===
|${sideBySide(batchStartPlan.treeString, curPlan.treeString).mkString("\n")}
""".stripMargin)
} else {
logTrace(s"Batch ${batch.name} has no effect.")
}
}
curPlan
}
}
如果对scala的foldLeft不熟悉,可以看这里: https://blog.csdn.net/oopsoom/article/details/23447317
foldLeft在spark源码中使用的很广泛,一定要搞懂。
再看rule:
abstract class Rule[TreeType <: TreeNode[_]] extends Logging {
/** Name for this rule, automatically inferred based on class name. */
val ruleName: String = {
val className = getClass.getName
if (className endsWith "$") className.dropRight(1) else className
}
def apply(plan: TreeType): TreeType
}
输入为旧的plan,输出为新的plan,仅此而已。所以真正的逻辑在各个继承实现的rule里,analyze的过程也就是执行各个rule的过程。下一节会详细讲解。
这里的Rule和RuleExecutor不仅仅在这里使用,在后面的Optimizer等都有使用。